The multivariate Belgium dataset
Belgium_MV.Rd
Single site dataset containing thirty experimental units (plots), with four species seeded at two density levels, representing fifteen communities. Three ecosystem function responses are recorded for each plot in a single year. The responses have been linearly transformed to lie on the same scale. Data is in a stacked format.
Usage
data("Belgium_MV")
Format
A data frame with 150 observations on the following 9 variables.
YEARN
a numeric vector indicating the time point (year) that the ecosystem function recording was measured at
PLOT
a numeric vector indicating the ID of the experimental unit from which the observation was recorded
G1
a numeric vector ranging from 0 to 1, the proportion of the species G1
G2
a numeric vector ranging from 0 to 1, the proportion of the species G2
L1
a numeric vector ranging from 0 to 1, the proportion of the species L1
L2
a numeric vector ranging from 0 to 1, the proportion of the species L2
DENS
a vector of factors with two levels, -1 or 1, representing the seeding density of the plot
Var
a character vector indicating the ecosystem function recorded
Y
a numeric vector indicating the value of the ecosystem function recorded
Details
Data comes from a single site from a wider agrodiversity experiment conducted in Belgium,
established in 2002.
The four species used were Lolium perenne (G1), Phleum pratense (G2), Trifolium pratense (L1), and
Trifolium repens (L2). There are two recommended functional groupings: grouping grasses (G1, G2) and
legumes (L1, L2), or grouping fast-establishing species (G1, L1) and temporally persistent species
(G2, L2).
Three ecosystem functions were recorded by summing recordings from multiple harvests over the years of
of the experiment: (1) aboveground biomass of sown species (Sown) (t DM ha-1), (2) aboveground
biomass of weed species (Weed) (t DM ha-1) and (3) the total annual yield of nitrogen in harvested
aboveground biomass (N) (t DM ha-1). A linear transformation on the response was applied to the
value 'Y', where they now represent a percentage of the top 10% of recorded values for
each function, i.e., each response was multiplied by 100, then divided by the mean of the top three
readings.
This dataset was extracted from the dataset 'Belgium'.
Source
Dooley, A., Isbell, F., Kirwan, L., Connolly, J., Finn, J.A. and Brophy, C., 2015.
Testing the effects of diversity on ecosystem multifunctionality using a multivariate model.
Ecology Letters, 18(11), pp.1242-1251.
Kirwan, L., Connolly, J., Brophy, C., Baadshaug, O.H., Belanger, G., Black, A., Carnus, T., Collins,
R.P., Cop, J., Delgado, I., De Vliegher, A., Elgersma A., Frankow-Lindberg, B., Golinski, P.,
Grieu, P., Gustavsson, A.M., Helgadóttir, Á., Höglind, M., Huguenin-Elie, O., Jørgensen, M.,
Kadžiulienė, Ž., Lunnan, T., Lüscher, A., Kurki, P., Porqueddu, C., Sebastia, M.-T., Thumm, U.,
Walmsley, D., and Finn, J., 2014.
The Agrodiversity Experiment: three years of data from a multisite study in intensively managed
grasslands.
References
Dooley, A., Isbell, F., Kirwan, L., Connolly, J., Finn, J.A. and Brophy, C., 2015.
Testing the effects of diversity on ecosystem multifunctionality using a multivariate model.
Ecology Letters, 18(11), pp.1242-1251.
Kirwan, L., Connolly, J., Brophy, C., Baadshaug, O.H., Belanger, G., Black, A., Carnus, T., Collins,
R.P., Cop, J., Delgado, I., De Vliegher, A., Elgersma A., Frankow-Lindberg, B., Golinski, P.,
Grieu, P., Gustavsson, A.M., Helgadóttir, Á., Höglind, M., Huguenin-Elie, O., Jørgensen, M.,
Kadžiulienė, Ž., Lunnan, T., Lüscher, A., Kurki, P., Porqueddu, C., Sebastia, M.-T., Thumm, U.,
Walmsley, D., and Finn, J., 2014.
The Agrodiversity Experiment: three years of data from a multisite study in intensively managed
grasslands.
Finn, J.A., Kirwan, L., Connolly, J., Sebastia, M.T., Helgadottir, A., Baadshaug, O.H.,
Belanger, G., Black, A., Brophy, C., Collins, R.P., Cop, J., Dalmannsdóttir, S., Delgado, I.,
Elgersma, A., Fothergill, M., Frankow-Lindberg, B.E., Ghesquiere, A., Golinska, B., Golinski, P.,
Grieu, P., Gustavsson, A.M., Höglind, M., Huguenin-Elie, O., Jørgensen, M., Kadziuliene, Z.,
Kurki, P., Llurba, R., Lunnan, T., Porqueddu, C., Suter, M., Thumm, U., and Lüscher, A., 2013.
Ecosystem function enhanced by combining four functional types of plant species in intensively
managed grassland mixtures: a 3-year continental-scale field experiment.
Journal of Applied Ecology, 50(2), pp.365-375 .
Kirwan, L., Connolly, J., Finn, J.A., Brophy, C., Luscher, A., Nyfeler, D. and Sebastia, M.T.,
2009.
Diversity-interaction modeling: estimating contributions of species identities and interactions
to ecosystem function.
Ecology, 90(8), pp.2032-2038.
Examples
#How to extra and transform the data from the 'Belgium' dataset
## Libraries ################################################
library(reshape2)
library(dplyr)
#>
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
library(DImodelsMulti)
#############################################################
## Read in data##################################
data("Belgium")
Belgium_MV <- Belgium[which(Belgium$YEARN == 3), ]
#Top 3 values for each ecosystem function
top <- Belgium_MV %>%
arrange(desc(Y)) %>%
group_by(Var) %>%
slice(1:3)
#Divide by average of top values
top <- aggregate(Y ~ Var, data = top, FUN = "mean")
Belgium_MV$Y <- 100*Belgium_MV$Y
#Sown
condition <- which(Belgium_MV$Var == "Sown")
Belgium_MV$Y[condition] <- Belgium_MV$Y[condition] /
top[1, "Y"]
#N
condition <- which(Belgium_MV$Var == "N")
Belgium_MV$Y[condition] <- Belgium_MV$Y[condition] /
top[2, "Y"]
#Weed
condition <- which(Belgium_MV$Var == "Weed")
Belgium_MV$Y[condition] <- Belgium_MV$Y[condition] /
top[3, "Y"]
Belgium_MV
#> YEARN PLOT DENS G1 G2 L1 L2 Var Y
#> 3 3 12 High 1.00 0.00 0.00 0.00 Sown 97.28529
#> 6 3 27 Low 1.00 0.00 0.00 0.00 Sown 85.30130
#> 9 3 13 High 0.00 1.00 0.00 0.00 Sown 109.38330
#> 12 3 28 Low 0.00 1.00 0.00 0.00 Sown 104.85410
#> 15 3 14 High 0.00 0.00 1.00 0.00 Sown 111.79308
#> 18 3 29 Low 0.00 0.00 1.00 0.00 Sown 104.84389
#> 21 3 1 High 0.70 0.10 0.10 0.10 Sown 147.27697
#> 24 3 16 Low 0.70 0.10 0.10 0.10 Sown 128.27171
#> 27 3 6 High 0.40 0.40 0.10 0.10 Sown 146.85606
#> 30 3 21 Low 0.40 0.40 0.10 0.10 Sown 147.96639
#> 33 3 2 High 0.10 0.70 0.10 0.10 Sown 137.97764
#> 36 3 17 Low 0.10 0.70 0.10 0.10 Sown 143.39015
#> 39 3 7 High 0.40 0.10 0.40 0.10 Sown 131.38370
#> 42 3 22 Low 0.40 0.10 0.40 0.10 Sown 142.80896
#> 45 3 9 High 0.10 0.40 0.40 0.10 Sown 140.76013
#> 48 3 24 Low 0.10 0.40 0.40 0.10 Sown 136.03128
#> 51 3 3 High 0.10 0.10 0.70 0.10 Sown 152.90260
#> 54 3 18 Low 0.10 0.10 0.70 0.10 Sown 147.25813
#> 57 3 5 High 0.25 0.25 0.25 0.25 Sown 140.51727
#> 60 3 20 Low 0.25 0.25 0.25 0.25 Sown 147.04639
#> 63 3 8 High 0.40 0.10 0.10 0.40 Sown 140.15944
#> 66 3 23 Low 0.40 0.10 0.10 0.40 Sown 153.93166
#> 69 3 10 High 0.10 0.40 0.10 0.40 Sown 128.04480
#> 72 3 25 Low 0.10 0.40 0.10 0.40 Sown 141.35070
#> 75 3 11 High 0.10 0.10 0.40 0.40 Sown 148.07851
#> 78 3 26 Low 0.10 0.10 0.40 0.40 Sown 134.12903
#> 81 3 4 High 0.10 0.10 0.10 0.70 Sown 150.12933
#> 84 3 19 Low 0.10 0.10 0.10 0.70 Sown 137.59442
#> 87 3 15 High 0.00 0.00 0.00 1.00 Sown 33.45700
#> 90 3 30 Low 0.00 0.00 0.00 1.00 Sown 16.70037
#> 91 3 12 High 1.00 0.00 0.00 0.00 N 42.33555
#> 92 3 27 Low 1.00 0.00 0.00 0.00 N 48.12690
#> 93 3 13 High 0.00 1.00 0.00 0.00 N 36.45611
#> 94 3 28 Low 0.00 1.00 0.00 0.00 N 39.37299
#> 95 3 14 High 0.00 0.00 1.00 0.00 N 66.34598
#> 96 3 29 Low 0.00 0.00 1.00 0.00 N 64.22847
#> 97 3 1 High 0.70 0.10 0.10 0.10 N 48.13995
#> 98 3 16 Low 0.70 0.10 0.10 0.10 N 44.52076
#> 99 3 6 High 0.40 0.40 0.10 0.10 N 51.25177
#> 100 3 21 Low 0.40 0.40 0.10 0.10 N 45.23530
#> 101 3 2 High 0.10 0.70 0.10 0.10 N 50.11961
#> 102 3 17 Low 0.10 0.70 0.10 0.10 N 43.80623
#> 103 3 7 High 0.40 0.10 0.40 0.10 N 55.71274
#> 104 3 22 Low 0.40 0.10 0.40 0.10 N 53.72819
#> 105 3 9 High 0.10 0.40 0.40 0.10 N 50.46709
#> 106 3 24 Low 0.10 0.40 0.40 0.10 N 48.34876
#> 107 3 3 High 0.10 0.10 0.70 0.10 N 52.66698
#> 108 3 18 Low 0.10 0.10 0.70 0.10 N 58.48606
#> 109 3 5 High 0.25 0.25 0.25 0.25 N 48.64893
#> 110 3 20 Low 0.25 0.25 0.25 0.25 N 46.74758
#> 111 3 8 High 0.40 0.10 0.10 0.40 N 43.63004
#> 112 3 23 Low 0.40 0.10 0.10 0.40 N 49.49969
#> 113 3 10 High 0.10 0.40 0.10 0.40 N 46.93355
#> 114 3 25 Low 0.10 0.40 0.10 0.40 N 51.18815
#> 115 3 11 High 0.10 0.10 0.40 0.40 N 46.90908
#> 116 3 26 Low 0.10 0.10 0.40 0.40 N 56.71195
#> 117 3 4 High 0.10 0.10 0.10 0.70 N 50.23462
#> 118 3 19 Low 0.10 0.10 0.10 0.70 N 47.69458
#> 119 3 15 High 0.00 0.00 0.00 1.00 N 62.05794
#> 120 3 30 Low 0.00 0.00 0.00 1.00 N 66.37779
#> 121 3 12 High 1.00 0.00 0.00 0.00 Weed 90.23570
#> 122 3 27 Low 1.00 0.00 0.00 0.00 Weed 95.69545
#> 123 3 13 High 0.00 1.00 0.00 0.00 Weed 99.76610
#> 124 3 28 Low 0.00 1.00 0.00 0.00 Weed 99.83487
#> 125 3 14 High 0.00 0.00 1.00 0.00 Weed 96.80273
#> 126 3 29 Low 0.00 0.00 1.00 0.00 Weed 81.37624
#> 127 3 1 High 0.70 0.10 0.10 0.10 Weed 100.00000
#> 128 3 16 Low 0.70 0.10 0.10 0.10 Weed 100.00000
#> 129 3 6 High 0.40 0.40 0.10 0.10 Weed 94.96939
#> 130 3 21 Low 0.40 0.40 0.10 0.10 Weed 100.00000
#> 131 3 2 High 0.10 0.70 0.10 0.10 Weed 100.00000
#> 132 3 17 Low 0.10 0.70 0.10 0.10 Weed 100.00000
#> 133 3 7 High 0.40 0.10 0.40 0.10 Weed 99.99467
#> 134 3 22 Low 0.40 0.10 0.40 0.10 Weed 100.00000
#> 135 3 9 High 0.10 0.40 0.40 0.10 Weed 100.00000
#> 136 3 24 Low 0.10 0.40 0.40 0.10 Weed 100.00000
#> 137 3 3 High 0.10 0.10 0.70 0.10 Weed 100.00000
#> 138 3 18 Low 0.10 0.10 0.70 0.10 Weed 100.00000
#> 139 3 5 High 0.25 0.25 0.25 0.25 Weed 99.96881
#> 140 3 20 Low 0.25 0.25 0.25 0.25 Weed 99.64182
#> 141 3 8 High 0.40 0.10 0.10 0.40 Weed 92.23312
#> 142 3 23 Low 0.40 0.10 0.10 0.40 Weed 100.00000
#> 143 3 10 High 0.10 0.40 0.10 0.40 Weed 100.00000
#> 144 3 25 Low 0.10 0.40 0.10 0.40 Weed 100.00000
#> 145 3 11 High 0.10 0.10 0.40 0.40 Weed 99.83170
#> 146 3 26 Low 0.10 0.10 0.40 0.40 Weed 98.73048
#> 147 3 4 High 0.10 0.10 0.10 0.70 Weed 100.00000
#> 148 3 19 Low 0.10 0.10 0.10 0.70 Weed 99.75334
#> 149 3 15 High 0.00 0.00 0.00 1.00 Weed 19.93108
#> 150 3 30 Low 0.00 0.00 0.00 1.00 Weed 0.00000